A Novel Monopolar Cross-Scale Nanopositioning Stage Based on Dual Piezoelectric Stick-Slip Driving Principle

Author:

Zhu JunhuiORCID,Meng Siyuan,Wang Yong,Pang Ming,Hu Zhiping,Ru Changhai

Abstract

The precise characterization and measurement of new nanomaterials and nano devices require in situ SEM nanorobotic instrumentation systems, which put forward further technical requirements on nanopositioning techniques of compact structure, cross-scale, nanometer accuracy, high vacuum and non-magnetic environment compatibility, etc. In this work, a novel cross-scale nanopositioning stage was proposed, which combined the advantages of piezoelectric stick-slip positioner and piezoelectric scanner techniques and adopted the idea of macro/micro positioning. A new structure design of a single flexible hinge shared by a small and large PZT was proposed to effectively reduce the size of the positioning stage and achieve millimeter stroke and nanometer motion positioning accuracy. Then, the cross-scale motion generation mechanism of the dual piezoelectric stick-slip drive was studied, the system-level dynamics model of the proposed positioning stages was constructed, and the mechanism design was optimized. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the proposed positioning stage has a maximum motion range of 20 mm and minimum step length of 70 nm under the small piezoceramic ceramic macro-motion stepping mode, and a maximum scanning range of 4.9 μm and motion resolution of 16 nm under the large piezoceramic ceramic micro-motion scanning mode. Moreover, the proposed stage has a compact structure size of 30 × 17 × 8 mm3, with a maximum motion speed of 10 mm/s and maximum load of 2 kg. The experimental results confirm the feasibility of the proposed stage, and nanometer positioning resolution, high accuracy, high speed, and a large travel range were achieved, which demonstrates that the proposed stage has significant performance and potential for many in situ SEM nanorobotic instrument systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3