Herbicide Resistance to Metsulfuron-Methyl in Rumex dentatus L. in North-West India and Its Management Perspectives for Sustainable Wheat Production

Author:

Chaudhary Ankur,Chhokar Rajender Singh,Dhanda SachinORCID,Kaushik Prashant,Kaur SimerjeetORCID,Poonia Todar Mal,Khedwal Rajbir SinghORCID,Kumar Surender,Punia Satbir Singh

Abstract

Herbicide resistance in weeds is a global threat to sustaining food security. In India, herbicide-resistant Phalaris minor was the major problem in wheat for more than two decades, but the continuous use of metsulfuron-methyl (an ALS inhibitor) to control broadleaf weeds has resulted in the evolution of ALS inhibitor-resistant Rumex dentatus L. This review summarizes the current scenario of herbicide resistance in R. dentatus, along with its ecology and management perspectives. Studies have provided valuable insights on the emergence pattern of R. dentatus under different environments in relation to tillage, cropping systems, nutrients, and irrigation. Moreover, R. dentatus has exhibited higher emergence under zero tillage, with high infestation levels in rice-wheat compared to other wheat-based cropping systems (sorghum-wheat). Alternative herbicides for the management of resistant R. dentatus include pendimethalin, 2,4-D, carfentrazone, isoproturon, and metribuzin. Although the pre-emergence application of pendimethalin is highly successful in suppressing R. dentatus, but its efficiency is questionable under lower field soil moisture and heavy residue load conditions. Nevertheless, the biological data may be utilized to control R. dentatus. Therefore, herbicide rotation with suitable spray techniques, collecting weed seeds at differential heights from wheat, crop rotation, alternate tillage practices, and straw retention are recommended for addressing the resistance issue in R. dentatus in North India conditions. Overall, we discuss the current state of herbicide resistance in R. dentatus, the agronomic factors affecting its population, its proliferation in specific cropping systems (rice-wheat), and management strategies for containing an infestation of a resistant population.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3