Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture

Author:

Cho JaiyoungORCID,Park Sung Min,Park A Reum,Lee On Chan,Nam Geemoon,Ra In-HoORCID

Abstract

Agrivoltaic (agriculture–photovoltaic) or solar sharing has gained growing recognition as a promising means of integrating agriculture and solar-energy harvesting. Although this field offers great potential, data on the impact on crop growth and development are insufficient. As such, this study examines the impact of agriculture–photovoltaic farming on crops using energy information and communications technology (ICT). The researched crops were grapes, cultivated land was divided into six sections, photovoltaic panels were installed in three test areas, and not installed in the other three. A 1300 × 520 mm photovoltaic module was installed on a screen that was designed with a shading rate of 30%. In addition, to collect farming-cultivation-environment data and to analyze power generation, sensors for growing environments and wireless-communication devices were used. As a result, normal modules generated 25.2 MWh, bifacial modules generated 21.6 MWh, and transparent modules generated 25.7 MWh over a five-month period. We could not find a difference in grape growth according to the difference of each module. However, a slight slowing of grape growth was found in the experiment group compared to the control group. Nevertheless, the sugar content of the test area of the grape fruit in the harvest season was 17.6 Brix on average, and the sugar content of the control area was measured at 17.2 Brix. Grape sugar-content level was shown to be at almost the same level as that in the control group by delaying the harvest time by about 10 days. In conclusion, this study shows that it is possible to produce renewable energy without any meaningful negative impact on normal grape farming.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3