Coexistence of Periods in Parallel and Sequential Boolean Graph Dynamical Systems over Directed Graphs

Author:

Aledo Juan A.ORCID,Diaz Luis G.ORCID,Martinez SilviaORCID,Valverde Jose C.ORCID

Abstract

In this work, we solve the problem of the coexistence of periodic orbits in homogeneous Boolean graph dynamical systems that are induced by a maxterm or a minterm (Boolean) function, with a direct underlying dependency graph. Specifically, we show that periodic orbits of any period can coexist in both kinds of update schedules, parallel and sequential. This result contrasts with the properties of their counterparts over undirected graphs with the same evolution operators, where fixed points cannot coexist with periodic orbits of other different periods. These results complete the study of the periodic structure of homogeneous Boolean graph dynamical systems on maxterm and minterm functions.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Graph Turing machines;Ackerman,2017

2. Binary codes and period-2 orbits of sequential dynamical systems;Defant;Discret. Math. Theor. Comput. Sci.,2017

3. Cellular Automaton Modelling of Biological Pattern Formation;Deutsch,2004

4. Metabolic stability and epigenesis in randomly constructed genetic nets

5. The Origins of Order: Self Organization and Selection in Evolution;Kauffman,1993

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of synchronous Boolean networks with non-binary states;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

2. NUMBER OF ATTRACTORS AND CYCLIC STATES IN FINITE DYNAMIC SYSTEMS OF COMPLETE GRAPHS ORIENTATIONS;PRIKL DISKRETN MAT;2024

3. Symmetrizable Boolean networks;Information Sciences;2023-05

4. Fuzzy parallel dynamical systems on Zadeh operators;Mathematical Methods in the Applied Sciences;2023-02-10

5. Fixed points in generalized parallel and sequential dynamical systems induced by a minterm or maxterm Boolean functions;Journal of Computational and Applied Mathematics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3