A Novel Role of Medicago truncatula KNAT3/4/5-like Class 2 KNOX Transcription Factors in Drought Stress Tolerance

Author:

Iannelli Maria Adelaide1,Nicolodi Chiara1,Coraggio Immacolata1,Fabriani Marco1,Baldoni Elena2ORCID,Frugis Giovanna1ORCID

Affiliation:

1. National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy

2. National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy

Abstract

Class 2 KNOX homeobox transcription factors (KNOX2) play a role in promoting cell differentiation in several plant developmental processes. In Arabidopsis, they antagonize the meristematic KNOX1 function during leaf development through the modulation of phytohormones. In Medicago truncatula, three KNOX2 genes belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like or MtKNOX3-like) redundantly works upstream of a cytokinin-signaling module to control the symbiotic root nodule formation. Their possible role in the response to abiotic stress is as-of-yet unknown. We produced transgenic M. truncatula lines, in which the expression of four MtKNOX3-like genes was knocked down by RNA interference. When tested for response to water withdrawal in the soil, RNAi lines displayed a lower tolerance to drought conditions compared to the control lines, measured as increased leaf water loss, accelerated leaf wilting time, and faster chlorophyll loss. Reanalysis of a transcriptomic M. truncatula drought stress experiment via cluster analysis and gene co-expression networks pointed to a possible role of MtKNOX3-like transcription factors in repressing a proline dehydrogenase gene (MtPDH), specifically at 4 days after water withdrawal. Proline measurement and gene expression analysis of transgenic RNAi plants compared to the controls confirmed the role of KNOX3-like genes in inhibiting proline degradation through the regulation of the MtPDH gene.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3