Spacecraft Homography Pose Estimation with Single-Stage Deep Convolutional Neural Network

Author:

Chen Shengpeng1ORCID,Yang Wenyi1,Wang Wei1ORCID,Mai Jianting1,Liang Jian1,Zhang Xiaohu1

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510275, China

Abstract

Spacecraft pose estimation using computer vision has garnered increasing attention in research areas such as automation system theory, control theory, sensors and instruments, robot technology, and automation software. Confronted with the extreme environment of space, existing spacecraft pose estimation methods are predominantly multi-stage networks with complex operations. In this study, we propose an approach for spacecraft homography pose estimation with a single-stage deep convolutional neural network for the first time. We formulated a homomorphic geometric constraint equation for spacecraft with planar features. Additionally, we employed a single-stage 2D keypoint regression network to obtain homography 2D keypoint coordinates for spacecraft. After decomposition to obtain the rough spacecraft pose based on the homography matrix constructed according to the geometric constraint equation, a loss function based on pixel errors was employed to refine the spacecraft pose. We conducted extensive experiments using widely used spacecraft pose estimation datasets and compared our method with state-of-the-art techniques in the field to demonstrate its effectiveness.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3