A Many-Objective Simultaneous Feature Selection and Discretization for LCS-Based Gesture Recognition

Author:

Otis Martin J.-D.ORCID,Vandewynckel Julien

Abstract

Discretization and feature selection are two relevant techniques for dimensionality reduction. The first one aims to transform a set of continuous attributes into discrete ones, and the second removes the irrelevant and redundant features; these two methods often lead to be more specific and concise data. In this paper, we propose to simultaneously deal with optimal feature subset selection, discretization, and classifier parameter tuning. As an illustration, the proposed problem formulation has been addressed using a constrained many-objective optimization algorithm based on dominance and decomposition (C-MOEA/DD) and a limited-memory implementation of the warping longest common subsequence algorithm (WarpingLCSS). In addition, the discretization sub-problem has been addressed using a variable-length representation, along with a variable-length crossover, to overcome the need of specifying the number of elements defining the discretization scheme in advance. We conduct experiments on a real-world benchmark dataset; compare two discretization criteria as discretization objective, namely Ameva and ur-CAIM; and analyze recognition performance and reduction capabilities. Our results show that our approach outperforms previous reported results by up to 11% and achieves an average feature reduction rate of 80%.

Funder

Natural Sciences and Engineering Research Council

Fonds de Recherche du Québec - Nature et Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3