A Visualization-Based Ramp Event Detection Model for Wind Power Generation

Author:

Fu Junwei12,Ni Yuna3,Ma Yuming4,Zhao Jian3ORCID,Yang Qiuyi3ORCID,Xu Shiyi3,Zhang Xiang35,Liu Yuhua45ORCID

Affiliation:

1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

2. Zhejiang Energy Technology Research Institute Co., Ltd., Hangzhou 311121, China

3. School of Information Management & Artificial Intelligence, Zhejiang University of Finance & Economics, Hangzhou 310018, China

4. School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018, China

5. Shangyu Science and Engineering Research Institute Co., Ltd. of Hangzhou Dianzi University, Shaoxing 312399, China

Abstract

Wind power ramp events (WPREs) are a common phenomenon in wind power generation. This unavoidable phenomenon poses a great harm to the balance of active power and the stability of frequency in the power supply system, which seriously threatens the safety, stability, and economic operation of the power grid. In order to deal with the impact of ramp events, accurate and rapid detection of ramp events is of great significance for the formulation of response measures. However, some attribute information is ignored in previous studies, and the laws and characteristics of ramp events are difficult to present intuitively. In this paper, we propose a visualization-based ramp event detection model for wind power generation. Firstly, a ramp event detection model is designed considering the multidimensional attributes of ramp events. Then, an uncertainty analysis scheme of ramp events based on the confidence is proposed, enabling users to analyze and judge the detection results of ramp events from different dimensions. In addition, an interactive optimization model is designed, supporting users to update samples interactively, to realize iterative optimization of the detection model. Finally, a set of visual designs and user-friendly interactions are implemented, enabling users to explore WPREs, judge the identification results, and interactively optimize the model. Case studies and expert interviews based on real-world datasets further demonstrate the effectiveness of our system in the WPREs identification, the exploration of the accuracy of identification results, and interactive optimization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3