Modified Electromechanical Modeling and Parameters Analysis of Magnetoplasmadynamic Thruster

Author:

Zhang Yu,Wu Jianjun,Ou Yang,Li Jian,Tan Sheng

Abstract

To predict the thrust of magnetoplasmadynamic thrusters (MPDTs), a modified electromechanical model was proposed and a comparison with experimental results is presented in this paper. The motion of propellant in the thruster was divided into two portions: the axial motion which was accelerated by the interaction of current and induced self-field, and the swirling motion which was accelerated by the interaction of current and applied magnetic field. The electromechanical model was in good agreement with the experimental data, and the fitting degrees of the model were greater than 0.93. Furthermore, the influence of parameters on the performance of MPDT were investigated by utilizing the electromechanical model. The results indicate that the thrust performance of the thruster improved with the increase of discharge current, anode radius, applied magnetic field strength, and the decrease of mass flow rate. However, the large anode radius and low mass flow rate readily led to the failure of thruster function. Therefore, the model can not only predict the thrust performance of MPDTs, but also guide the design and operation optimization of the thruster.

Funder

Chinese National Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3