Investigation of the Effect of Hydrogen and Methane on Combustion of Multicomponent Syngas Mixtures using a Constructed Reduced Chemical Kinetics Mechanism

Author:

Stylianidis Nearchos,Azimov Ulugbek,Birkett MartinORCID

Abstract

This study investigated the effects of H2 and CH4 concentrations on the ignition delay time and laminar flame speed during the combustion of CH4/H2 and multicomponent syngas mixtures using a novel constructed reduced syngas chemical kinetics mechanism. The results were compared with experiments and GRI Mech 3.0 mechanism. It was found that mixture reactivity decreases and increases when higher concentrations of CH4 and H2 were used, respectively. With higher H2 concentration in the mixture, the formation of OH is faster, leading to higher laminar flame speed and shorter ignition delay time. CH4 and H2 concentrations were calculated at different pressures and equivalence ratios, showing that at high pressures CH4 is consumed slower, and, at different equivalence ratios CH4 reacts at different temperatures. In the presence of H2, CH4 was consumed faster. In the conducted two-stage sensitivity analysis, the first analysis showed that H2/CH4/CO mixture combustion is driven by H2-based reactions related to the consumption/formation of OH and CH4 recombination reactions are responsible for CH4 oxidation. The second analysis showed that similar CH4-based and H2 -based reactions were sensitive in both, methane- and hydrogen-rich H2/CH4 mixtures. The difference was observed for reactions CH2O + OH = HCO + H2O and CH4 + HO2 = CH3 + H2O2, which were found to be important for CH4-rich mixtures, while reactions OH + HO2 = H2O + O2 and HO2 + H = OH + OH were found to be important for H2-rich mixtures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3