Hybrid Bayesian Network Models of Spinal Injury and Slip/Fall Events

Author:

Hughes RichardORCID

Abstract

Background: Biomechanists are often asked to provide expert opinions in legal proceedings, especially personal injury cases. This often involves using deterministic analysis methods, although the expert is expected to opine using a civil standard of “more likely than not” that is inherently probabilistic. Methods: A method is proposed for converting a class of deterministic biomechanical models into hybrid Bayesian networks that produce a probability well suited for addressing the civil standard of proof. The method was developed for spinal injury during lifting. Its generalizability was assessed by applying it to slip and fall events based on the coefficients of friction at the shoe–floor interface. Results: The proposed method is shown to be generalizable beyond lifting by applying it to a slip and fall event. Both the lifting and slip and fall models showed that incorporating evidence of injury could change the probabilities of critical quantities exceeding a threshold from “less likely than not” to “more likely than not.” Conclusions: The present work shows that it is possible to develop Bayesian networks for legal use based on laws of engineering mechanics and probabilistic descriptions of measurement error and human variability.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. The A-Z Guide to Expert Witnessing;Babitsky,2006

2. Burke v. Town of Walpole, 405 F.3d 66 (1st Cir. 2005),2005

3. Occupational Biomechanics;Chaffin,2006

4. Using a Bayesian Network to Predict L5/S1 Spinal Compression Force from Posture, Hand Load, Anthropometry, and Disc Injury Status

5. Revised NIOSH equation for the design and evaluation of manual lifting tasks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3