Bio-Kinetics of Simultaneous Nitrification and Aerobic Denitrification (SNaD) by a Cyanide- Degrading Bacterium Under Cyanide-Laden Conditions

Author:

Mpongwana Ncumisa,Ntwampe Seteno Karabo ObedORCID,Omodanisi Elizabeth IfeORCID,Chidi Boredi SilasORCID,Razanamahandry Lovasoa ChristineORCID,Dlangamandla Cynthia,Mukandi Melody RuvimboORCID

Abstract

A microorganism isolated and identified as Acinetobacter courvalinii was found to be able to perform sequential free cyanide (CN−) degradation, simultaneous nitrification and aerobic denitrification (SNaD); this ability was associated with the multiphase growth profile of the microorganism when provided with multiple nitrogenous sources. The effect of CN− on SNaD including enzyme expression, activity and protein functionality of Acinetobacter courvalinii was investigated. It was found that CN− concentration of 1.9 to 5.8 mg CN−/L did not affect the growth of Acinetobacter courvalinii. Furthermore, the degradation rates of CN− and ammonium-nitrogen (NH4-N) were found to be 2.2 mg CN−/L/h and 0.40 mg NH4-N/L/h, respectively. Moreover, five models’ (Monod, Moser, Generic Rate law, Haldane, and Andrews) ability to predict SNaD under CN− conditions, indicated that, only the Rate law, Haldane and Andrew’s models, were suited to predict both SNaD and CN− degradation. The effect of CN− on NH4-N, nitrate-nitrogen (NO3−) and nitrite-nitrogen (NO2−) oxidizing enzymes indicated that the CN− did not affect the expression and activity of ammonia monooxygenase (AMO); albeit, reduced the expression and activity of nitrate reductase (NaR) and nitrite reductase (NiR). Nevertheless, a slow decrease in NO2− was observed after the supplementation of CN− to the cultures, thus confirming the activity of NaR and the activation of the denitrification pathway by the CN−. These special characteristics of the Acinetobacter courvalinii isolate, suggests its suitability for the treatment of wastewater containing multiple nitrogenous compounds in which CN− is present.

Funder

Cape Peninsula University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3