Molecular Analysis of Retrogradation of Corn Starches

Author:

Sikora Marek,Krystyjan Magdalena,Dobosz Anna,Tomasik Piotr,Walkowiak Katarzyna,Masewicz Łukasz,Kowalczewski Przemysław ŁukaszORCID,Baranowska Hanna MariaORCID

Abstract

Changes of the molecular dynamics of water in 5% corn starch pastes and 5% systems composed of starch and non-starchy hydrocolloid were studied during short and long term retrogradation. Low Field NMR was used to record mean correlation times (τc) of water molecules. This molecular parameter reflects the rotation of water molecules within the network of paste. Starches of different amylose and amylopectin content were selected for this study. Comparison of the changes of τc shows how particular polymers bind water molecules. During 90 days of storage, over 50% increase in mean correlation time was recorded in pastes of starches with high amylose content. This suggests that the formation of polymeric network is controlled by amylose to which water is binding. Amylopectin was found to influence the mobility of water in the pastes to a lesser extent with changes in mean correlation times of approximately 10–15% over 90 days. On retrogradation, amylopectin, Arabic and xanthan gums hindered the formation of solid phase structures. Guar gum evoked an increase in mean correlation times of approximately 40–50% during the prolonged process of changes of the molecular dynamics of water. This indicates continued expansion of the polymeric network. Mean correlation time available from spin–lattice and spin–spin relaxation times can be useful in the analysis of the rotational vibrations of the water molecules in biopolymeric structures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference55 articles.

1. Characteristics and structure of starch isolated from triticale

2. Quality of reduced fat mayonnaise prepared with native waxy starches;Lewandowicz,2018

3. Starch: Structure, analysis, and application;Zobel,2016

4. Starch- and Dextrin-Based Adhesives;Kennedy,1989

5. Starch as a Green Binder for the Formulation of Conducting Glue in Supercapacitors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3