Molecular Insights into Sequence Distributions and Conformation-Dependent Properties of High-Phenyl Polysiloxanes

Author:

Zhu Lin,Cheng XiaoORCID,Su Wenlu,Zhao JiaxinORCID,Zhou ChuanjianORCID

Abstract

The excellent performance and wide applications of phenyl polysiloxanes are largely due to their phenyl units and monomer sequences. However, the relationship between molecular structure and material properties has not been explicitly elucidated. In this work, the sequence distribution and microstructure of random copolymers were quantitatively investigated by means of a molecular dynamics (MD) simulation combined with experimental verification. The results of 29Si NMR showed that the large number of phenyl units not only shortened the length of the dimethyl units, but also significantly increased the proportion of consecutive phenyl units. The simulation results indicated the attraction between adjacent phenyl groups that were effectively strengthened intra- and inter- molecular interactions, which determined the equilibrium population of conformations and the dynamics of conformational transitions. Furthermore, the evolution of bond angle distribution, torsion distribution, and mean-squared displacements (MSD) shed light on the conformational characteristics that induce the unique thermodynamics properties and photophysical behavior of high-phenyl polysiloxanes. Differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), spectrofluorimetry, and laser scanning confocal microscopy (LSCM) were performed to verify the conclusions drawn from the simulation. Overall, the complementary use of MD simulations and experiments provided a deep molecular insight into structure–property relationships, which will provide theoretical guidance for the rational design and preparation of high-performance siloxanes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3