Crystalline Characteristics, Mechanical Properties, Thermal Degradation Kinetics and Hydration Behavior of Biodegradable Fibers Melt-Spun from Polyoxymethylene/Poly(l-lactic acid) Blends

Author:

Li Jianhua,Wang Yatao,Wang XiaodongORCID,Wu Dezhen

Abstract

A series of polyoxymethylene (POM)/poly(l-lactic acid) (PLLA) blends were prepared by melt extrusion, and their spinnability was confirmed by rheological characterizations, successive self-nucleation, and annealing thermal fractionation analysis. The bicomponent fibers were prepared by means of the melt-spinning and post-drawing technologies using the above-obtained blends, and their morphology, crystalline orientation characteristics, mechanical performance, hydration behavior, and thermal degradation kinetics were studied extensively. The bicomponent fibers exhibited a uniform diameter distribution and compact texture at the ultimate draw ratio. Although the presence of PLLA reduced the crystallinity of the POM domain in the bicomponent fibers, the post-drawing process promoted the crystalline orientation of lamellar folded-chain crystallites due to the stress-induced crystallization effect and enhanced the crystallinity of the POM domain accordingly. As a result, the bicomponent fibers achieved the relatively high tensile strength of 791 MPa. The bicomponent fibers exhibited a partial hydration capability in both acid and alkali media and therefore could meet the requirement for serving as a type of biodegradable fibers. The introduction of PLLA slightly reduced the thermo-oxidative aging property and thermal stability of the bicomponent fibers. Such a combination of two polymers shortened the thermal lifetime of the bicomponent fibers, which could facilitate their natural degradation for ecological and sustainable applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3