Mechanical, Thermal, and Electrical Properties of BN–Epoxy Composites Modified with Carboxyl-Terminated Butadiene Nitrile Liquid Rubber

Author:

Bian Xingming,Tuo Rui,Yang Wei,Zhang Yiran,Xie Qing,Zha Junwei,Lin Jun,He ShaojianORCID

Abstract

Filled high thermal conductivity epoxy composite solves the problem of the low thermal conductivity of the epoxy resin itself, but the addition of the thermal conductive filler reduces the mechanical properties of the composite, which limits its application in the field of high voltage insulation. In this work, carboxyl-terminated butadiene nitrile liquid rubber (CTBN) was used to toughen the boron nitride-epoxy hybrid system, and the effects of different contents of CTBN on the mechanical properties, thermal conductivity, glass transition temperature, thermal stability, and dielectric properties of the composites were investigated. The results showed that when the content of CTBN was 5–15 wt.%, the CTBN formed a dispersed island structure in the epoxy resin matrix. The toughness of the composite increased by about 32%, the breakdown strength was improved, and the thermal conductivity was about 160% higher than that of pure epoxy resin. As the CTBN content increased, the glass transition temperature and thermal stability of the composite decreased and the dielectric constant and the dielectric loss increased. When the CTBN content is 10–15 wt.%, a toughened epoxy composite material with better comprehensive properties is obtained.

Funder

the National Key Research and Development Program of China

the State Key Laboratory of Advanced Power Transmission Technology

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3