Tracking a Jammer in Wireless Sensor Networks and Selecting Boundary Nodes by Estimating Signal-to-Noise Ratios and Using an Extended Kalman Filter

Author:

Aldosari WaleedORCID,Zohdy Mohamed

Abstract

This work investigates boundary node selection when tracking a jammer. A technique to choose nodes to track jammers by estimating signal-to-noise Ratio (SNR), jammer-to-noise ratio (JNR), and jammer received signal strength (JRSS) are introduced in this paper. We proposed a boundary node selection threshold (BNST) algorithm. Every node can become a boundary node by comparing the SNR threshold, the average SNR estimated at the boundary node, and the received BNST value. The maximum sensing range, transmission range, and JRSS are the main parts of this algorithm. The algorithm is divided into three steps. In the first step, the maximum distance between two jammed nodes is found. Next, the maximum distance between the jammed node and its unjammed neighbors is computed. Finally, maximum BNST value is estimated. The extended Kalman filter (EKF) is utilized in this work to track the jammer and estimate its position in a different time step using selected boundary nodes. The experiment validates the benefits of selecting a boundary when tracking a jammer.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Jamming Detection in Wireless IoT Networks;IEEE Access;2023

2. Received Power Based Jammer Localization Using Unscented Kalman Filtering;Wearable and Neuronic Antennas for Medical and Wireless Applications;2022-05-06

3. An Efficient Localization and Avoidance Method of Jammers in Vehicular Ad Hoc Networks;IEEE Access;2022

4. Distributed Extended Kalman Filtering Based Techniques for 3-D UAV Jamming Localization;Sensors;2020-11-10

5. Tracking the Mobile Jammer in Wireless Sensor Networks Using Extended Kalman Filter;2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON);2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3