Abstract
This work investigates boundary node selection when tracking a jammer. A technique to choose nodes to track jammers by estimating signal-to-noise Ratio (SNR), jammer-to-noise ratio (JNR), and jammer received signal strength (JRSS) are introduced in this paper. We proposed a boundary node selection threshold (BNST) algorithm. Every node can become a boundary node by comparing the SNR threshold, the average SNR estimated at the boundary node, and the received BNST value. The maximum sensing range, transmission range, and JRSS are the main parts of this algorithm. The algorithm is divided into three steps. In the first step, the maximum distance between two jammed nodes is found. Next, the maximum distance between the jammed node and its unjammed neighbors is computed. Finally, maximum BNST value is estimated. The extended Kalman filter (EKF) is utilized in this work to track the jammer and estimate its position in a different time step using selected boundary nodes. The experiment validates the benefits of selecting a boundary when tracking a jammer.
Subject
Control and Optimization,Computer Networks and Communications,Instrumentation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献