Automatic Segmentation of Laser-Induced Injury OCT Images Based on a Deep Neural Network Model

Author:

Gao TianxinORCID,Liu Shuai,Gao Enze,Wang AncongORCID,Tang Xiaoying,Fan YingweiORCID

Abstract

Optical coherence tomography (OCT) has considerable application potential in noninvasive diagnosis and disease monitoring. Skin diseases, such as basal cell carcinoma (BCC), are destructive; hence, quantitative segmentation of the skin is very important for early diagnosis and treatment. Deep neural networks have been widely used in the boundary recognition and segmentation of diseased areas in medical images. Research on OCT skin segmentation and laser-induced skin damage segmentation based on deep neural networks is still in its infancy. Here, a segmentation and quantitative analysis pipeline of laser skin injury and skin stratification based on a deep neural network model is proposed. Based on the stratification of mouse skins, a laser injury model of mouse skins induced by lasers was constructed, and the multilayer structure and injury areas were accurately segmented by using a deep neural network method. First, the intact area of mouse skin and the damaged areas of different laser radiation doses are collected by the OCT system, and then the labels are manually labeled by experienced histologists. A variety of deep neural network models are used to realize the segmentation of skin layers and damaged areas on the skin dataset. In particular, the U-Net model based on a dual attention mechanism is used to realize the segmentation of the laser-damage structure, and the results are compared and analyzed. The segmentation results showed that the Dice coefficient of the mouse dermis layer and injury area reached more than 0.90, and the Dice coefficient of the fat layer and muscle layer reached more than 0.80. In the evaluation results, the average surface distance (ASSD) and Hausdorff distance (HD) indicated that the segmentation results are excellent, with a high overlap rate with the manually labeled area and a short edge distance. The results of this study have important application value for the quantitative analysis of laser-induced skin injury and the exploration of laser biological effects and have potential application value for the early noninvasive detection of diseases and the monitoring of postoperative recovery in the future.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3