Lyophilization of Curcumin–Albumin Nanoplex with Sucrose as Cryoprotectant: Aqueous Reconstitution, Dissolution, Kinetic Solubility, and Physicochemical Stability

Author:

Chua Angeline,Tran The-Thien,Pu Siyu,Park Jin-Won,Hadinoto Kunn

Abstract

An amorphous curcumin (CUR) and bovine serum albumin (BSA) nanoparticle complex (nanoplex) was previously developed as a promising anticancer nanotherapy. The CUR-BSA nanoplex had been characterized in its aqueous suspension form. The present work developed a dry-powder form of the CUR-BSA nanoplex by lyophilization using sucrose as a cryoprotectant. The cryoprotective activity of sucrose was examined at sucrose mass fractions of 33.33, 50.00, and 66.66% by evaluating the lyophilized nanoplex’s (1) aqueous reconstitution and (2) CUR dissolution and kinetic solubility. The physicochemical stabilizing effects of sucrose upon the nanoplex’s 30-day exposures to 40 °C and 75% relative humidity were examined from (i) aqueous reconstitution, (ii) CUR dissolution, (iii) CUR and BSA payloads, (iv) amorphous form stability, and (v) BSA’s structural integrity. The good cryoprotective activity of sucrose was evidenced by the preserved BSA’s integrity and good aqueous reconstitution, resulting in a fast CUR dissolution rate and a high kinetic solubility (≈5–9× thermodynamic solubility), similar to the nanoplex suspension. While the aqueous reconstitution, CUR dissolution, and amorphous form were minimally affected by the elevated heat and humidity exposures, the treated nanoplex exhibited a lower BSA payload (≈7–26% loss) and increased protein aggregation postexposure. The adverse effects on the BSA payload and aggregation were minimized at higher sucrose mass fractions.

Funder

Nanyang Technological University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3