Digital Platform for Automatic Qualitative and Quantitative Reading of a Cryptococcal Antigen Point-of-Care Assay Leveraging Smartphones and Artificial Intelligence

Author:

Bermejo-Peláez David1,Medina Narda23ORCID,Álamo Elisa1,Soto-Debran Juan Carlos2,Bonilla Oscar24ORCID,Luengo-Oroz Miguel1,Rodriguez-Tudela Juan Luis5,Alastruey-Izquierdo Ana256ORCID

Affiliation:

1. Spotlab, 28040 Madrid, Spain

2. Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain

3. Asociación de Salud Integral, Guatemala City 01001, Guatemala

4. Clínica Familiar “Luis Ángel García”, Hospital General San Juan de Dios, Guatemala City 01001, Guatemala

5. Global Action for Fungal Infections, 1208 Geneva, Switzerland

6. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain

Abstract

Cryptococcosis is a fungal infection that causes serious illness, particularly in immunocompromised individuals such as people living with HIV. Point of care tests (POCT) can help identify and diagnose patients with several advantages including rapid results and ease of use. The cryptococcal antigen (CrAg) lateral flow assay (LFA) has demonstrated excellent performance in diagnosing cryptococcosis, and it is particularly useful in resource-limited settings where laboratory-based tests may not be readily available. The use of artificial intelligence (AI) for the interpretation of rapid diagnostic tests can improve the accuracy and speed of test results, as well as reduce the cost and workload of healthcare professionals, reducing subjectivity associated with its interpretation. In this work, we analyze a smartphone-based digital system assisted by AI to automatically interpret CrAg LFA as well as to estimate the antigen concentration in the strip. The system showed excellent performance for predicting LFA qualitative interpretation with an area under the receiver operating characteristic curve of 0.997. On the other hand, its potential to predict antigen concentration based solely on a photograph of the LFA has also been demonstrated, finding a strong correlation between band intensity and antigen concentration, with a Pearson correlation coefficient of 0.953. The system, which is connected to a cloud web platform, allows for case identification, quality control, and real-time monitoring.

Funder

Global Action For Fungal Infections

JYLAG

Fondo de Investigación Sanitaria

Spanish State Investigation Agency

ECCMID

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3