Unraveling the Role of Bacteria in Nitrogen Cycling: Insights from Leaf Litter Decomposition in the Knyszyn Forest

Author:

Khomutovska Nataliia1ORCID,Jasser Iwona2ORCID,Isidorov Valery A.3ORCID

Affiliation:

1. Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden

2. Department of Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland

3. Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland

Abstract

Microorganisms are vital in leaf litter decomposition and contribute significantly to global nutrient cycling. However, there is a need for improved understanding of the taxonomic and functional diversity of litter-associated bacteria. The Knyszyn Forest comprises a unique ecosystem providing diverse microhabitats for microorganisms in central Europe, similar to the southwestern taiga in many respects. This study presents the results of high-throughput sequencing performed for Betula pendula, B. pubescens, and Carpinus betulus litter-associated microbial communities from northern Poland. Microbial assemblage composition and structure at different stages of litter decomposition revealed the domination of phyllosphere-associated taxa of Sphingomonas and Pseudomonas in bacterial communities in the early stages. Meanwhile, at the later stages of decomposition, the representation of soil-associated bacterial communities, such as Pedobacter, was higher. This study identifies key bacteria (Pedobacter, Mucilaginibacter, and Luteibacter) as pivotal in nutrient cycling through cellulose and hemicellulose decomposition, dominating later decomposition phases. Taxonomic analysis based on functional markers associated with nitrogen metabolism highlights the pivotal role of specific Pseudomonadota (Proteobacteria) taxa in driving nitrogen cycling dynamics during litter decomposition. Most of these taxa were unclassified at the genus level, particularly in the later stages of litter decomposition, and are crucial in mediating nitrogen transformation processes, underscoring their significance in ecosystem nutrient cycling.

Funder

National Science Centre

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3