Analytical Solutions of the Riccati Differential Equation: Particle Deposition in a Viscous Stagnant Fluid
Author:
Affiliation:
1. PAI+, Department of Mechanical Engineering, Universidad Autónoma de Occidente, Cali 760030, Colombia
2. PAI+, Institute for Sustainability, Universidad Autónoma de Occidente, Cali 760030, Colombia
Abstract
Publisher
MDPI AG
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Link
https://www.mdpi.com/2227-7390/11/15/3262/pdf
Reference45 articles.
1. Anderson, B.D., and Moore, J.B. (1999). Optimal Control-Linear Quadratic Methods, Prentice-Hall.
2. Newton’s laws of motion in form of Riccati equation;Nowakowski;Phys. Rev. E,2002
3. Fraga, E.S. (1999). The Schrodinger and Riccati Equations, Springer. Lecture Notes in Chemistry.
4. Nonlinear Riccati Equations as a Unifying Link between Linear Quantum Mechanics and Other Fields of Physics;Dieter;J. Phys. Conf. Ser.,2014
5. Lain, S., and Gandini, M.A. (2023). Ideal reactors as an illustration of solving transport phenomena problems in Engineering. Fluids, 8.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3