Retrieval-Augmented Knowledge Graph Reasoning for Commonsense Question Answering

Author:

Sha Yuchen1,Feng Yujian1,He Miao2,Liu Shangdong2ORCID,Ji Yimu2

Affiliation:

1. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Existing knowledge graph (KG) models for commonsense question answering present two challenges: (i) existing methods retrieve entities related to questions from the knowledge graph, which may extract noise and irrelevant nodes, and (ii) there is a lack of interaction representation between questions and graph entities. However, current methods mainly focus on retrieving relevant entities with some noisy and irrelevant nodes. In this paper, we propose a novel retrieval-augmented knowledge graph (RAKG) model, which solves the above issues using two key innovations. First, we leverage the density matrix to make the model reason along the corrected knowledge path and extract an enhanced subgraph of the knowledge graph. Second, we fuse representations of questions and graph entities through a bidirectional attention strategy, in which two representations fuse and update using a graph convolutional network (GCN). To evaluate the performance of our method, we conducted experiments on two widely used benchmark datasets: CommonsenseQA and OpenBookQA. The case study gives insight into the finding that the augmented subgraph provides reasoning along the corrected knowledge path for question answering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Open Research Project of Zhejiang Lab

Postgraduate Research & Practice Innovation Program of the Jiangsu Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3