Analytical Model for Information Flow Management in Intelligent Transport Systems

Author:

Terentyev Alexey1,Marusin Alexey23ORCID,Evtyukov Sergey4,Marusin Aleksandr3ORCID,Shevtsova Anastasia5ORCID,Zelenov Vladimir6

Affiliation:

1. Department of Vehicles, St. Petersburg State University of Architecture and Civil Engineering, 190005 St. Petersburg, Russia

2. Department of Technical Operation of Vehicles, St. Petersburg State University of Architecture and Civil Engineering, 190005 St. Petersburg, Russia

3. Department of Transportation of the Academy of Engineering, RUDN University (Peoples’ Friendship University of Russia Named after Patrice Lumumba), 117198 Moscow, Russia

4. Department of Ground Transport and Technological Machines, St. Petersburg State University of Architecture and Civil Engineering, 190005 St. Petersburg, Russia

5. Department of Operation and Organization of Vehicle Traffic, Belgorod State Technological University Named after V.G. Shukhov, 308012 Belgorod, Russia

6. Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia

Abstract

The performance of this study involves the use of the zoning method based on the principle of the hierarchical relationship between probabilities. This paper proposes an analytical model allowing for the design of information and analysis platforms in intelligent transport systems. The proposed model uses a synthesis of methods for managing complex systems’ structural dynamics and solves the problem of achieving the optimal balance between the information situations existing for the object and the subject under analysis. A series of principles are formulated that govern the mathematical modeling of information and analysis platforms. Specifically, these include the use of an object-oriented approach to forming the information space of possible decisions and the division into levels and subsystems based on the principles of technology homogeneity and information state heterogeneity. Using the proposed approach, an information and analysis platform is developed for sustainable transportation system management, that allows for the objective, multivariate forecasting-based record of changes in the system’s variables over time for a particular process, and where decision-making simulation models can be adjusted in relation to a particular process based on an information situation existing for a particular process within a complex transport system. The study demonstrates a mathematical model that solves the optimal balance problem in organizationally and technically complex management systems and is based on vector optimization techniques for the most optimal decision-making management. The analysis involves classical mathematical functions with an unlimited number of variables including traffic volume, cargo turnover, safety status, environmental performance, and related variables associated with the movement of objects within a transport network. The study has produced a routing protocol prescribing the optimal vehicle trajectories within an organizationally and technically complex system exposed to a substantial number of external factors of uncertain nature.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3