An Overview of Kriging and Cokriging Predictors for Functional Random Fields

Author:

Giraldo Ramón1ORCID,Leiva Víctor2ORCID,Castro Cecilia3ORCID

Affiliation:

1. Departamento de Estadística, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia

2. School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

3. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

This article presents an overview of methodologies for spatial prediction of functional data, focusing on both stationary and non-stationary conditions. A significant aspect of the functional random fields analysis is evaluating stationarity to characterize the stability of statistical properties across the spatial domain. The article explores methodologies from the literature, providing insights into the challenges and advancements in functional geostatistics. This work is relevant from theoretical and practical perspectives, offering an integrated view of methodologies tailored to the specific stationarity conditions of the functional processes under study. The practical implications of our work span across fields like environmental monitoring, geosciences, and biomedical research. This overview encourages advancements in functional geostatistics, paving the way for the development of innovative techniques for analyzing and predicting spatially correlated functional data. It lays the groundwork for future research, enhancing our understanding of spatial statistics and its applications.

Funder

FONDECYT

National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation

Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference61 articles.

1. Ramsay, J., and Silverman, B. (2005). Functional Data Analysis, Springer.

2. Christakos, G. (2000). Modern Spatiotemporal Geostatistics, Oxford University Press.

3. Chilès, J.P., and Delfiner, P. (2009). Geostatistics: Modeling Spatial Uncertainty, Wiley.

4. Ripley, B.D. (2005). Spatial Statistics, Wiley.

5. Cressie, N. (2015). Statistics for Spatial Sata, Wiley.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3