Long-Term Lifetime Prediction of Power MOSFET Devices Based on LSTM and GRU Algorithms

Author:

Ibrahim Mesfin Seid12ORCID,Abbas Waseem1,Waseem Muhammad13ORCID,Lu Chang1ORCID,Lee Hiu Hung1,Fan Jiajie456,Loo Ka-Hong13ORCID

Affiliation:

1. Centre for Advances in Reliability and Safety, New Territories, Hong Kong

2. Kombolcha Institute of Technology, Wollo University, Kombolcha P.O. Box 208, Ethiopia

3. Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

4. Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China

5. Shanghai Engineering Technology Research Center for SiC Power Device, Fudan University, Shanghai 200433, China

6. Institute of Wide Bandgap Semiconductor Materials and Devices, Research Institute of Fudan University in Ningbo, Fudan University, Ningbo 315336, China

Abstract

Predicting the long-term lifetime of power MOSFET devices plays a central role in the prevention of unprecedented failures for power MOSFETs used in safety-critical applications. The various traditional model-based approaches and statistical and filtering algorithms for prognostics have limitations in terms of handling the dynamic nature of failure precursor degradation data for these devices. In this paper, a prognostic model based on LSTM and GRU is developed that aims at estimating the long-term lifetime of discrete power MOSFETs using dominant failure precursor degradation data. An accelerated power cycling test has been designed and executed to collect failure precursor data. For this purpose, commercially available power MOSFETs passed through power cycling tests at different temperature swing conditions and potential failure precursor data were collected using an automated curve tracer after certain intervals. The on-state resistance degradation data identified as one of the dominant failure precursors and potential aging precursors has been analyzed using RNN, LSTM, and GRU-based algorithms. The LSTM and GRU models have been found to be superior compared to RNN, with MAPE of 0.9%, 0.78%, and 1.72% for MOSFET 1; 0.90%, 0.66%, and 0.6% for MOSFET 5; and 1.05%, 0.9%, and 0.78%, for MOSFET 9, respectively, predicted at 40,000 cycles. In addition, the robustness of these methods is examined using training data at 24,000 and 54,000 cycles of starting points and is able to predict the long-term lifetime accurately, as evaluated by MAPE, MSE, and RMSE metrics. In general, the prediction results showed that the prognostics algorithms developed were trained to provide effective, accurate, and useful lifetime predictions and were found to address the reliability concerns of power MOSFET devices for practical applications.

Funder

Centre for Advances in Reliability and Safety

National Natural Science Foundation of China

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3