Affiliation:
1. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
2. Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Marine College, Shandong University, Weihai 264209, China
Abstract
Ulva pertusa (U. pertusa) is a benthic macroalgae in submerged conditions, and it is relatively difficult to monitor with the remote sensing approaches for floating macroalgae. In this work, a novel remote-sensing approach is proposed for monitoring the U. pertusa green tide, which applies a deep learning method to high-resolution RGB images acquired with unmanned aerial vehicle (UAV). The results of U. pertusa extraction from semi-simultaneous UAV, Landsat-8, and Gaofen-1 (GF-1) images demonstrate the superior accuracy of the deep learning method in extracting U. pertusa from UAV images, achieving an accuracy of 96.46%, a precision of 94.84%, a recall of 92.42%, and an F1 score of 0.92, surpassing the algae index-based method. The deep learning method also performs well in extracting U. pertusa from satellite images, achieving an accuracy of 85.11%, a precision of 74.05%, a recall of 96.44%, and an F1 score of 0.83. In the cross-validation between the results of Landsat-8 and UAV, the root mean square error (RMSE) of the portion of macroalgae (POM) model for U. pertusa is 0.15, and the mean relative difference (MRD) is 25.01%. The POM model reduces the MRD in Ulva pertusa area extraction from Landsat-8 imagery from 36.08% to 6%. This approach of combining deep learning and UAV remote sensing tends to enable automated, high-precision extraction of U. pertusa, overcoming the limitations of an algae index-based approach, to calibrate the satellite image-based monitoring results and to improve the monitoring frequency by applying UAV remote sensing when the high-resolution satellite images are not available.
Funder
National Natural Science Foundation of China
Key R&D Program of Shandong Province, China
the Strategic Priority Research Program of the Chinese Academy of Sciences
the Instrument Developing Project of the Chinese Academy of Sciences
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献