Affiliation:
1. Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece
Abstract
The emerging digitalization in today’s industrial environments allows manufacturers to store online knowledge about production and use it to make better informed management decisions. This paper proposes a multi-agent framework enhanced with digital twin (DT) for production scheduling and optimization. Decentralized scheduling agents interact to efficiently manage the work allocation in different segments of production. A DT is used to evaluate the performance of different scheduling decisions and to avoid potential risks and bottlenecks. Production managers can supervise the system’s decision-making processes and manually regulate them online. The multi-agent system (MAS) uses asset administration shells (AASs) for data modelling and communication, enabling interoperability and scalability. The framework was deployed and tested in an industrial pilot coming from the bicycle production industry, optimizing and controlling the short-term production schedule of the different departments. The evaluation resulted in a higher production rate, thus achieving higher production volume in a shorter time span. Managers were also able to coordinate schedules from different departments in a dynamic way and achieve early bottleneck detection.