GRAAL: Graph-Based Retrieval for Collecting Related Passages across Multiple Documents

Author:

Mongiovì Misael12ORCID,Gangemi Aldo123ORCID

Affiliation:

1. Institute of Cognitive Science and Technology, National Research Council of Italy, 00196 Rome, Italy

2. Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy

3. Department of Philosophy and Communication, University of Bologna, 40126 Bologna, Italy

Abstract

Finding passages related to a sentence over a large collection of text documents is a fundamental task for claim verification and open-domain question answering. For instance, a common approach for verifying a claim is to extract short snippets of relevant text from a collection of reference documents and provide them as input to a natural language inference machine that determines whether the claim can be deduced or refuted. Available approaches struggle when several pieces of evidence from different documents need to be combined to make an inference, as individual documents often have a low relevance with the input and are therefore excluded. We propose GRAAL (GRAph-based retrievAL), a novel graph-based approach that outlines the relevant evidence as a subgraph of a large graph that summarizes the whole corpus. We assess the validity of this approach by building a large graph that represents co-occurring entity mentions on a corpus of Wikipedia pages and using this graph to identify candidate text relevant to a claim across multiple pages. Our experiments on a subset of FEVER, a popular benchmark, show that the proposed approach is effective in identifying short passages related to a claim from multiple documents.

Funder

projects TAILOR

SI-ROBOTICS: SocIal ROBOTICS for active and healthy ageing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3