Specific Assay of Negative Strand Template to Quantify Intracellular Levels of Rhinovirus Double-Stranded RNA

Author:

Wiehler Shahina,Proud DavidORCID

Abstract

Human rhinovirus infections are a major trigger for acute exacerbations of lower airway diseases, including asthma and chronic obstructive pulmonary disease. Disease exacerbation is thought to be regulated via double-stranded RNA (dsRNA)-mediated signaling of proinflammatory and host defense responses in airway epithelial cells. Despite the central role of dsRNA in regulating host cell responses, no method for the quantitative assessment of dsRNA levels during HRV infections has been developed. Conventional RT-PCR for the negative strand template is not effective as self-priming results in apparent signals, even in the absence of primer during reverse transcription. To avoid these issues, we developed a selective assay for the negative strand template that uses a chimeric primer containing a 5′ non-viral sequence for reverse transcription and a primer using the non-viral sequence during subsequent PCR. We established that this assay avoided issues of self-priming and is strand specific, as it is unaffected even in the presence of a 1000-fold excess of positive strand. Assays in primary human airway epithelial cells showed that negative strand was detectable within 6 h of virus exposure and peaked at 18 h after virus exposure. The temporal pattern of negative strand induction mirrored that of genomic RNA but was always 1000-fold lower than positive strand, indicating that the negative strand levels regulate levels of dsRNA formation. This assay will permit relative quantification of dsRNA during studies of HRV regulation of epithelial cell function.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3