Effect of Bismuth Ferrite Nanometer Filler Element Doping on the Surface Insulation Properties of Epoxy Resin Composites

Author:

Xie JunORCID,Xiao Chaoxuan,Shao Shuai,Duan QijunORCID,Xie Qing,Lü Fangcheng

Abstract

In the direct current electric field, the surface of epoxy resin (EP) insulating material is prone to charge accumulation, which leads to electric field distortion and damages the overall insulation of the equipment. Nano-doping is an effective method to improve the surface insulation strength and DC flashover voltage of epoxy resin composites. In this study, pure bismuth ferrite nanoparticles (BFO), as well as BFO nanofillers, which were doped by La element, Cr element as well as co-doped by La + Cr element, were prepared by the sol-gel method. Epoxy composites with various filler concentrations were prepared by blending nano-fillers with epoxy resin. The morphology and crystal structure of the filler were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) tests. The effects of different filler types and filler mass fraction on the surface flashover voltage, charge dissipation rate, and trap characteristics of epoxy resin composites were studied. The results showed that element doping with bismuth ferrite nanofillers could further increase the flash voltage of the composites. The flashover voltage of La + Cr elements co-doped composites with the filler mass fraction of 4 wt% was 45.2% higher than that of pure epoxy resin. Through data comparison, it is found that the surface charge dissipation rate is not the only determinant of the flashover voltage. Appropriately reducing the surface charge dissipation rate of epoxy resin composites can increase the flashover voltage. Finally, combining with the distribution characteristics of the traps on the surface of the materials to explain the mechanism, it is found that the doping of La element and Cr element can increase the energy level depth and density of the deep traps of the composite materials, which can effectively improve the flashover voltage along the surface of the epoxy resin.

Funder

National Natural Science Foundation of China

State Key Laboratory Of Alternate Electrical Power System With Renewable Energy Sources

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference52 articles.

1. Experiment study of surface flashover on epoxy resin discharged by nanosecond pulses in SF6;Xie;Proc. CSEE,2016

2. Boron nitride‐graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation

3. Barium titanate/epoxy resin composite nanodielectrics as compact capacitive energy storing systems

4. Study on Surface Charges Accumulation on Insulator and Its Effects on the Surface Electrical Field in DC-GIL with Electro-thermal Coupling Model;Zhou;Proc. CSEE,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3