Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques

Author:

Liu SiyuanORCID,Lin YiORCID,Yan Lei,Yang BinORCID

Abstract

Accurate estimation of polarized reflectance (Rp) of land surfaces is critical for remote sensing of aerosol optical properties. In the last two decades, many data-driven bidirectional polarization distribution function (BPDF) models have been proposed for accurate estimation of Rp, among which the generalized regression neural network (GRNN) based BPDF model has been reported to perform the best. GRNN is just a simple machine learning (ML) technique that can solve non-linear problems. Many ML techniques were reported to work well in solving non-linear problems and consequently may provide better performance in BPDF modeling. However, incorporating various ML techniques with BPDF modeling and comparing their performances have never been well documented. In this study, three widely used ML algorithms—i.e., support vector regression (SVR), K-nearest-neighbor (KNN), and random forest (RF)—were applied for BPDF modeling. Using measurements collected by the Polarization and Directionality of the Earth’s Reflectance onboard PARASOL satellite (POLDER/PARASOL), non-linear relationships between Rp and the input variables, i.e., Fresnel factor (Fp), scattering angle (SA), reflectance at 670 nm (R670) and 865 nm (R865), were built using these ML algorithms. Results showed that taking Fp, SA, R670, and R865 as input variables, the performance of the four ML-based BPDF models was quite similar. The KNN-based BPDF model provided slightly better results, and improved the accuracy of the semi-empirical BPDF models by 9.55% in terms of the overall root mean square error (RMSE). Experiments of different configuration of input variables suggested that using multi-band reflectance as input variables provided better results than using vegetation indices. The RF-based BPDF model using all reflectances at six bands as input variables produced the best results, improving the overall accuracy by 6.62% compared with the GRNN-based BPDF model. Among all the input variables, reflectance at absorbing spectral bands—e.g., 490 nm and 670 nm—played more significant roles in RF-based BPDF modeling due to the domination of polarized partition in total reflectance. Fresnel factor and scattering angle were also important for BPDF modeling. This study confirmed the feasibility of applying ML techniques to more accurate BPDF modeling, and the RF-based BPDF model proposed in this study can be used to increase the accuracy of remote sensing of the complete aerosol properties.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3