1. Po, R., Yifan, W., Golyanik, V., Aberman, K., Barron, J.T., Bermano, A.H., Chan, E.R., Dekel, T., Holynski, A., and Kanazawa, A. (2023). State of the art on diffusion models for visual computing. arXiv.
2. Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D., Yuan, L., and Guo, B. (2022, January 18–24). Vector quantized diffusion model for text-to-image synthesis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA.
3. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-conditional image generation with clip latents. arXiv.
4. Nichol, A.Q., and Dhariwal, P. (2021, January 18–24). Improved denoising diffusion probabilistic models. Proceedings of the International Conference on Machine Learning, Virtual Event.
5. Diffusion models beat gans on image synthesis;Dhariwal;Adv. Neural Inf. Process. Syst.,2021