A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs

Author:

Zeng Li,Xia Tian,Elsayed Salah K.ORCID,Ahmed MahrousORCID,Rezaei MostafaORCID,Jermsittiparsert KittisakORCID,Dampage UdayaORCID,Mohamed Mohamed A.ORCID

Abstract

A static VAR compensator (SVC) is a critical component for reactive power compensation in electric arc furnaces (EAFs) that is used to relieve the flicker impacts and maintain the voltage level. A weak voltage profile can not only reduce the power-quality services, but can also result in system instability in severe cases. The cybersecurity of EAFs is becoming a significant concern due to their cyber-physical structure. The reliance of SVC controllers on reactive power measurement and network communications has resulted in a cyber-vulnerability point for unauthorized access to the EAF, which can affect its normal operation. This paper addresses concerns about cyber attacks on EAFs, which can cause network communication issues in measurement data for SVCs. Three significant and different types of cyber attacks that are launched on SVC controllers—a replay attack, delay attack, and false data injection attack (FDIA)—were simulated and investigated. In order to stop the activities of cyber attacks, a secured anomaly detection model (ADM) based on a prediction interval is proposed. The proposed model is dependent on a support vector regression and a new smooth cost function for constructing the optimal and symmetrical intervals. A modified algorithm based on teaching–learning-based optimization was developed to adapt the ADM’s parameters during training. The simulation’s outcomes on a genuine dataset showed the strong capability of the proposed model against cyber attacks in EAFs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3