A Zero-Shot Low Light Image Enhancement Method Integrating Gating Mechanism

Author:

Tian Junhao1,Zhang Jianwei1ORCID

Affiliation:

1. School of Computer Science, Sichuan University, Chengdu 610065, China

Abstract

Photographs taken under harsh ambient lighting can suffer from a number of image quality degradation phenomena due to insufficient exposure. These include reduced brightness, loss of transfer information, noise, and color distortion. In order to solve the above problems, researchers have proposed many deep learning-based methods to improve the illumination of images. However, most existing methods face the problem of difficulty in obtaining paired training data. In this context, a zero-reference image enhancement network for low light conditions is proposed in this paper. First, the improved Encoder-Decoder structure is used to extract image features to generate feature maps and generate the parameter matrix of the enhancement factor from the feature maps. Then, the enhancement curve is constructed using the parameter matrix. The image is iteratively enhanced using the enhancement curve and the enhancement parameters. Second, the unsupervised algorithm needs to design an image non-reference loss function in training. Four non-reference loss functions are introduced to train the parameter estimation network. Experiments on several datasets with only low-light images show that the proposed network has improved performance compared with other methods in NIQE, PIQE, and BRISQUE non-reference evaluation index, and ablation experiments are carried out for key parts, which proves the effectiveness of this method. At the same time, the performance data of the method on PC devices and mobile devices are investigated, and the experimental analysis is given. This proves the feasibility of the method in this paper in practical application.

Funder

Key R&D Projects in Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3