Performance of Low-Height Railway Noise Barriers with Porous Materials

Author:

Lázaro JoãoORCID,Pereira MatheusORCID,Costa Pedro Alves,Godinho LuísORCID

Abstract

Rail transport is the most sustainable transportation mode, with the lowest energy consumption and carbon footprint. However, the noise induced by railway traffic in urban regions is a significant drawback and several reports point out the risks and the amount of people suffering from direct exposure to railway noise. One of the most used mitigation measures for railway noise is the implementation of noise barriers. Although they offer a significant reduction in noise levels, their height makes people feel enclosed. Therefore, in the case of railway infrastructure, the solution to the problem may lie in the use of barriers with a lower height placed close to the railway track. As the noise-forming mechanisms are mainly located at the track level, placing the barrier in a position close to the track allows mitigating rail noise without causing the problems identified above for the population in the vicinity. The purpose of this paper is to illustrate the development of a barrier solution to be used in a railway context through numerical modelling with the Boundary Element Method (BEM). The solutions developed were placed close to the track and have a low height. The geometry was defined so as to direct the energy back to the track to take advantage of the acoustic properties of the ballast. The addition of a porous granular material on the inner face of the barrier allows the control of reflections between the vehicle body and the barrier, increasing its acoustic efficiency. Finally, considering the most efficient solution, the insertion loss in a network of receivers located 10 m away from the track is analysed in order to study the noise reduction levels in a place where human receivers are usually located.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Environmental Noise in Europe—2020,2020

2. Noise Exposure Scenarios in 2020 and 2030 Outlooks for EU 28;Blanes,2019

3. Environmental Noise Guidelines for the European Region,2018

4. Railway Noise in Europe. State of the Art Report;De Vos,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3