Numerical and Experimental Study on the Duration of Nozzle Starting of the Reflected High-Enthalpy Shock Tunnel

Author:

Yu JiangpengORCID,Li Jinping,Wang QiuORCID,Zhang Xiaoyuan,Zhang ShizhongORCID

Abstract

The starting process of the flow in the nozzle of the JF-14 shock tunnel (1.6 m in length, 500 mm in outlet diameter) in the State Key Laboratory of High Temperature Gas Dynamics is analyzed by calculation and experiment. Two key factors which directly affect the duration of the nozzle starting are the velocity of the expansion wave and the low-velocity zone generated by the interaction between the secondary shock wave and boundary layer on the wall surface. In the process of the nozzle starting, the flow field stabilizes at the center of the nozzle outlet first, and then gradually stabilizes along the radius direction, thus defining the central startup and complete startup of the nozzle. It is found that there is a critical initial pressure. When the initial pressure is lower than the critical pressure, the airflow can reach stability in the nozzle outlet center with the shortest time, otherwise, the time required is much longer. The time required for the airflow to stabilize in the whole outlet section is mainly affected by the size of the low-velocity zone. It is also found that only at a very low initial pressure can the airflow simultaneously reach stability at the entire outlet of the nozzle.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Progresses on experiment techniques of hypersonic and high-enthalpy windtunnels;Iang;Acta Aerodyn. Sin.,2019

2. Development of a stagnation streamline model for thermochemical nonequilibrium flow

3. Study on Performance of Detonation-Driven Shock Tube

4. Numerical investigation of real-gas effect of inward-turning inlet at Mach 12

5. Shock tunnel theory and methods for duplicating hypersonic flight conditions;Jang;Chin. J. Theor. Appl. Mech.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3