Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach

Author:

Coia Alexandra1,Ruddick Jackson1,Kuang Olivia2,Wang Li-Qiong1ORCID

Affiliation:

1. Department of Chemistry, Brown University, Providence, RI 02912, USA

2. Rhode Island School of Design, Providence, RI 02912, USA

Abstract

Transition metal complexes have historically played a pivotal role in creating vibrant pigments utilized across artistic mediums such as ceramics, paintings, and glass mosaics. Despite their extensive historical use, our understanding of the mechanisms governing transition metal complex behavior has predominantly emerged in recent times, leaving numerous aspects of this process ripe for exploration. These complexes exhibit striking color variations under diverse conditions when employed in pigment formulations. This review utilizes a bottom-up scientific approach, spanning from microscopic to macroscopic scales, to unravel the molecular origins of the colors generated by transition metal complexes in pigments and ceramic glazes. Advanced spectroscopy techniques and computational chemistry play pivotal roles in this endeavor, highlighting the significance of understanding and utilizing analytical data effectively, with careful consideration of each technique’s specific application. Furthermore, this review investigates the influence of processing conditions on color variations, providing valuable insights for artists and manufacturers aiming to enhance the precision and quality of their creations while mitigating environmental impact.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3