Abstract
Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose genotoxic risks due to their chemical structures; however, the molecular details of the undesirable effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational molecular docking study, the DNA binding modes and binding affinities of 14 azo dyes, previously determined to show DNA clastogenicity, were characterized using 2 different double-stranded DNA (dsDNA) conformations (an intact dsDNA and dsDNA with an intercalation gap). In this study, it was determined that 10 out of the 14 genotoxic azo dyes were strong dsDNA minor groove binders, while the remaining ones formed tight binding complexes with dsDNA through intercalation or threading intercalation modes. The azo, nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl, bromine, nitrophenyl, imidazole, amino-phenylethanol and chloro-nitrophenyl groups were found to play primary role in the most favorable binding conformations of these dyes on dsDNA with an affinity ranging from −6.35 kcal/mol to −9.42 kcal/mol. It was determined that dsDNA sequences containing GT dinucleotides are frequently preferred in binding by these dyes, and that rings and polar groups are important features for tight binding with dsDNA. It was concluded that these dyes may be banned, or non-genotoxic congeners should be manufactured with appropriate molecular optimization for the genetic health of the human population and for future generations.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献