Integrative BNN-LHS Surrogate Modeling and Thermo-Mechanical-EM Analysis for Enhanced Characterization of High-Frequency Low-Pass Filters in COMSOL

Author:

Davalos-Guzman Jorge1ORCID,Chavez-Hurtado Jose L.2ORCID,Brito-Brito Zabdiel3ORCID

Affiliation:

1. Intel Corporation, Folsom, CA 95630, USA

2. Department of Electronics, Systems, and Informatics, ITESO (Instituto Tecnológico y de Estudios Superiores de Occidente), The Jesuit University of Guadalajara, Tlaquepaque 45604, Jalisco, Mexico

3. Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, 08860 Barcelona, Spain

Abstract

This paper pioneers a novel approach in electromagnetic (EM) system analysis by synergistically combining Bayesian Neural Networks (BNNs) informed by Latin Hypercube Sampling (LHS) with advanced thermal–mechanical surrogate modeling within COMSOL simulations for high-frequency low-pass filter modeling. Our methodology transcends traditional EM characterization by integrating physical dimension variability, thermal effects, mechanical deformation, and real-world operational conditions, thereby achieving a significant leap in predictive modeling fidelity. Through rigorous evaluation using Mean Squared Error (MSE), Maximum Learning Error (MLE), and Maximum Test Error (MTE) metrics, as well as comprehensive validation on unseen data, the model’s robustness and generalization capability is demonstrated. This research challenges conventional methods, offering a nuanced understanding of multiphysical phenomena to enhance reliability and resilience in electronic component design and optimization. The integration of thermal variables alongside dimensional parameters marks a novel paradigm in filter performance analysis, significantly improving simulation accuracy. Our findings not only contribute to the body of knowledge in EM diagnostics and complex-environment analysis but also pave the way for future investigations into the fusion of machine learning with computational physics, promising transformative impacts across various applications, from telecommunications to medical devices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3