Moving Microgrid Hierarchical Control to an SDN-Based Kubernetes Cluster: A Framework for Reliable and Flexible Energy Distribution

Author:

Pérez Ricardo1ORCID,Rivera Marco23ORCID,Salgueiro Yamisleydi4ORCID,Baier Carlos R.2ORCID,Wheeler Patrick3ORCID

Affiliation:

1. Department of Computer Science, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile

2. Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile

3. Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2GT, UK

4. Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile

Abstract

Software Defined Networking (SDN) is a communication alternative to increase the scalability and resilience of microgrid hierarchical control. The common architecture has a centralized and monolithic topology, where the controller is highly susceptible to latency problems, resiliency, and scalability issues. This paper proposes a novel and intelligent control network to improve the performance of microgrid communications, solving the typical drawback of monolithic SDN controllers. The SDN controller’s functionalities are segregated into microservices groups and distributed through a bare-metal Kubernetes cluster. Results are presented from PLECS hardware in the loop simulation to validate the seamless transition between standard hierarchical control to the SDN networked microgrid. The microservices significantly impact the performance of the SDN controller, decreasing the latency by 10.76% compared with a monolithic architecture. Furthermore, the proposed approach demonstrates a 42.23% decrease in packet loss versus monolithic topologies and a 53.41% reduction in recovery time during failures. Combining Kubernetes with SDN microservices can eliminate the single point of failure in hierarchical control, improve application recovery time, and enhance containerization benefits, including security and portability. This proposal represents a reference framework for future edge computing and intelligent control approaches in networked microgrids.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3