Temperature-Dominated Driving Mechanisms of the Plant Diversity in Temperate Forests, Northeast China

Author:

Gu YueORCID,Han Shijie,Zhang Junhui,Chen Zhijie,Wang Wenjie,Feng Yue,Jiang Yangao,Geng Shicong

Abstract

Climate, topography, and tree structure have different effects on plant diversity that vary with spatial scale. In this study, we assessed the contribution of these drivers and how they affect the vascular plant richness of different functional groups in a temperate forest ecosystem in Northeast China. We investigated about 0.986 million plants from 3160 sites to quantify the impact of annual mean temperature, sunshine duration, annual precipitation, standard deviation of diameter at breast height, and forest type on richness of vascular plants (total species, tree, treelet, shrub, and herb, separately) using the gradient boosting model. The results show that annual mean temperature had the strongest impact on plant richness. The tree richness peaked at intermediate annual mean temperature and sunshine duration and increased with annual precipitation. The Shannon diversity index and Simpson dominance index increased with annual precipitation and standard deviation of diameter at breast height, decreased with sunshine duration, and peaked at intermediate annual mean temperature and forest type. The total richness and understory richness increased with annual mean temperature and standard deviation of diameter at breast height and peaked at intermediate sunshine duration and annual precipitation. A comprehensive mechanism was found to regulate the plant diversity in forest ecosystems. The relationship between tree richness and annual mean temperature with latitudinal effect could be affected by the differences in number and size of tree individuals, indicating that plant diversity varies with the utilization of energy. The force driving plant richness varied with the functional group due to the different environmental resource requirements and the life history strategies of plants layers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

Reference112 articles.

1. An ecological study. Book reviews: Pattern and process in a forested ecosystem. Disturbance, development and the steady state based on the Hubbard brook ecosystem study;Bormann;Science,1979

2. Biological Determinants of Species Diversity

3. Global patterns in biodiversity

4. Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe

5. Environmental Drivers of Patterns of Plant Diversity Along a Wide Environmental Gradient in Korean Temperate Forests

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3