Prediction of Friction Factor and Heat Transfer Coefficient for Single-Phase Forced Convection Inside Microfin Tubes

Author:

Rossetto Luisa1ORCID,Diani Andrea1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Padova, 35131 Padova, Italy

Abstract

Microfin tubes are widely used to enhance heat transfer in heat exchangers in order to reduce volumes, costs and refrigerant charge. Much experimental work has been published for the flow of liquids, while some experimental work is available for the flow of gases for the chemical, refrigeration and air conditioning industry. This work reviews the literature and presents new experimental friction factors for the flow of the superheated vapor of R1234ze(E) in a 5 mm outside diameter microfin tube. The authors have also collected an extensive data bank of heat transfer coefficients (around 648 points from different research laboratories) and friction factors (around 536 points), covering 45 different geometries of inner finned tubes. After comparing the predictions from available correlations with experimental data, the present paper suggests the best performing equations for the calculation of the friction factor and of the Nusselt number during forced convection flow of liquids and gases. The suggested model for friction factor estimates the experimental values with a relative and absolute deviation of −0.3% and 7.9%, respectively, whereas the suggested model for the heat transfer coefficient predicts the experimental data bank with a relative and absolute deviation of −3.3% and 13.9%, respectively. The validity range of the two correlations is extremely wide, covering microfin tubes with diameters from 2.6 mm to 24.4 mm, and Reynolds number from about approximately 1000 to 300,000 for the friction factor, and from 3000 to 1,000,000 for the heat transfer coefficient.

Funder

MIUR

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3