A Predictive Fuzzy Logic Model for Forecasting Electricity Day-Ahead Market Prices for Scheduling Industrial Applications

Author:

Plakas Konstantinos1ORCID,Karampinis Ioannis1,Alefragis Panayiotis2ORCID,Birbas Alexios1,Birbas Michael1,Papalexopoulos Alex3

Affiliation:

1. Electrical and Computer Engineering Department, University of Patras, 26504 Patras, Greece

2. Electrical and Computer Engineering Department, University of Peloponnese, 26334 Patras, Greece

3. Ecco International Inc., San Francisco, CA 94104, USA

Abstract

Electricity price forecasting (EPF) has become an essential part of decision-making for energy companies to participate in power markets. As the energy mix becomes more uncertain and stochastic, this process has also become important for industrial companies, as their production schedules are greatly impacted by energy costs. Although various approaches have been tested with varying degrees of success, this study focuses on predicting day-ahead market (DAM) prices in different European markets and how this directly affects the optimal production scheduling for various industrial loads. We propose a fuzzy-based architecture that incorporates the results of two forecasting algorithms; a random forest (RF) and a long short-term memory (LSTM). To enhance the accuracy of the proposed model for a specific country, electricity market data from neighboring countries are also included. The developed DAM price forecaster can then be utilized by energy-intensive industries to optimize their production processes to reduce energy costs and improve energy-efficiency. Specifically, the tool is important for industries with multi-site production facilities in neighboring countries, which could reschedule the production processes depending on the forecasted electricity market price.

Funder

Horizon 2020 EU research and innovation program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3