Automated Symbolic Processes for Dynamic Modeling of Redundant Manipulator Robots

Author:

Urrea Claudio1ORCID,Saa Daniel1ORCID,Kern John1ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170124, Chile

Abstract

In this study, groundbreaking software has been developed to automate the generation of equations of motion for manipulator robots with varying configurations and degrees of freedom (DoF). The implementation of three algorithms rooted in the Lagrange–Euler (L-E) formulation is achieved through the utilization of .m files in MATLAB R2020a software.This results in the derivation of a symbolic dynamic model for industrial manipulator robots. To comprehend the unique features and advantages of the developed software, dynamic simulations are conducted for two 6- and 9-DoF redundant manipulator robots as well as for a 3-DoF non-redundant manipulator robot equipped with prismatic and rotational joints, which is used to simplify the dynamic equations of the redundant prototypes. Notably, for the 6-DoF manipulator robot, model predictive control (MPC) is employed using insights gained from the dynamic model. This enables optimal control by predicting the future evolution of state variables: specifically, the values of the robot’s joint variables. The software is executed to model the dynamics of different types of robots, and the CPU time for a MacBook Pro with a 3 GHz Dual-Core Intel Core i7 processor is less than a minute. Ultimately, the theoretical findings are validated through response graphs and performance indicators of the MPC, affirming the accurate functionality of the developed software. The significance of this work lies in the automation of motion equation generation for manipulator robots, paving the way for enhanced control strategies and facilitating advancements in the field of robotics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3