Improving Blood Vessel Segmentation and Depth Estimation in Laser Speckle Images Using Deep Learning

Author:

Morales-Vargas Eduardo1ORCID,Peregrina-Barreto Hayde2ORCID,Fuentes-Aguilar Rita Q.1ORCID,Padilla-Martinez Juan Pablo3,Garcia-Suastegui Wendy Argelia3ORCID,Ramirez-San-Juan Julio C.2ORCID

Affiliation:

1. Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Av. Gral. Ramón Corona No 2514, Zapopan 45201, Mexico

2. Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Santa Maria Tonantzintla, San Andres Cholula 72840, Mexico

3. Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico

Abstract

Microvasculature analysis is an important task in the medical field due to its various applications. It has been used for the diagnosis and threat of diseases in fields such as ophthalmology, dermatology, and neurology by measuring relative blood flow or blood vessel morphological properties. However, light scattering at the periphery of the blood vessel causes a decrease in contrast around the vessel borders and an increase in the noise of the image, making the localization of blood vessels a challenging task. Therefore, this work proposes integrating known information from the experimental setup into a deep learning architecture with multiple inputs to improve the generalization of a computational model for the segmentation of blood vessels and depth estimation in a single inference step. The proposed R-UNET + ET + LA obtained an intersection over union of 0.944 ± 0.065 and 0.812 ± 0.080 in the classification task for validation (in vitro) and test sets (in vivo), respectively, and a root mean squared error of 0.0085 ± 0.0275 μm in the depth estimation. This approach improves the generalization of current solutions by pre-training with in vitro data and adding information from the experimental setup. Additionally, the method can infer the depth of a blood vessel pixel by pixel instead of in regions as the current state of the art does.

Funder

Intel Rise

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3