Affiliation:
1. College of Electronic and Information Engineering, Southwest University, Chongqing 400700, China
Abstract
This article offers an optimal control tracking method using an event-triggered technique and the internal reinforcement Q-learning (IrQL) algorithm to address the tracking control issue of unknown nonlinear systems with multiple agents (MASs). Relying on the internal reinforcement reward (IRR) formula, a Q-learning function is calculated, and then the iteration IRQL method is developed. In contrast to mechanisms triggered by time, an event-triggered algorithm reduces the rate of transmission and computational load, since the controller may only be upgraded when the predetermined triggering circumstances are met. In addition, in order to implement the suggested system, a neutral reinforce-critic-actor (RCA) network structure is created that may assess the indices of performance and online learning of the event-triggering mechanism. This strategy is intended to be data-driven without having in-depth knowledge of system dynamics. We must develop the event-triggered weight tuning rule, which only modifies the parameters of the actor neutral network (ANN) in response to triggering cases. In addition, a Lyapunov-based convergence study of the reinforce-critic-actor neutral network (NN) is presented. Lastly, an example demonstrates the accessibility and efficiency of the suggested approach.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献