A Holonic Construction Management System for the Efficient Implementation of Building Energy Renovation Actions

Author:

Messi Leonardo1ORCID,Carbonari Alessandro1ORCID,Franco Carlos2ORCID,Spegni Francesco1ORCID,Vaccarini Massimo1ORCID,Naticchia Berardo1ORCID

Affiliation:

1. Construction Division, DICEA Department, Faculty of Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy

2. General Directorate of Architecture and Building Quality, Junta de Extremadura (JEA), Ministry of Mobility, Transport and Housing, Regional Government of Extremadura, 06800 Merida, Spain

Abstract

In the architecture, engineering and construction (AEC) industry, many efforts have provided remarkable contributions to construction planning and control processes during work execution. Nevertheless, frequent coordination issues among stakeholders and difficulties in dealing with unexpected events can be explained by the complexity featuring the construction sector. Several approaches to deal with this issue were investigated in the manufacturing area, among which this paper looks at the holonic approach as one of the most promising strategies. This study first analyzes the more fragmented and dynamic nature of the construction industry as compared with the manufacturing one. Secondly, it suggests developing a process-based holonic construction management system based on building information modeling (BIM) and a conceptual architecture for manufacturing control called Product Resource Order Staff Architecture (PROSA). The process-based paradigm ensures exploiting the benefits of BIM towards the development of sustainable and efficient regeneration methods of the built environment. Subsequently, a first management system prototype was developed and tested for the purpose of renovation works management. For the first time, results from an actual implementation of PROSA were applied to a real construction site, and its feasibility was assessed using the data on the field. Key performance indicators (KPIs) evaluated during the onsite demonstration confirmed a good performance of PROSA and the presented holonic approach, which contributed to the overall success of the energy efficient refurbishment project.

Funder

European Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3