Magnetically Compatible Brain Electrode Arrays Based on Single-Walled Carbon Nanotubes for Long-Term Implantation

Author:

Xia Jie12ORCID,Zhang Fan3,Zhang Luxi12,Cao Zhen1ORCID,Dong Shurong12ORCID,Zhang Shaomin3ORCID,Luo Jikui1ORCID,Zhou Guodong4ORCID

Affiliation:

1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

2. Nanhu Brain-Computer Interface Institute, Hangzhou 311121, China

3. The Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China

4. College of Integrated Circuits, Zhejiang University, Hangzhou 311200, China

Abstract

Advancements in brain–machine interfaces and neurological treatments urgently require the development of improved brain electrodes applied for long-term implantation, where traditional and polymer options face challenges like size, tissue damage, and signal quality. Carbon nanotubes are emerging as a promising alternative, combining excellent electronic properties and biocompatibility, which ensure better neuron coupling and stable signal acquisition. In this study, a new flexible brain electrode array based on 99.99% purity of single-walled carbon nanotubes (SWCNTs) was developed, which has 30 um × 40 um size, about 5.1 kΩ impedance, and 14.01 dB signal-to-noise ratio (SNR). The long-term implantation experiment in vivo in mice shows the proposed brain electrode can maintain stable LFP signal acquisition over 12 weeks while still achieving an SNR of 3.52 dB. The histological analysis results show that SWCNT-based brain electrodes induced minimal tissue damage and showed significantly reduced glial cell responses compared to platinum wire electrodes. Long-term stability comes from SWCNT’s biocompatibility and chemical inertness, the electrode’s flexible and fine structure. Furthermore, the new brain electrode array can function effectively during 7-Tesla magnetic resonance imaging, enabling the collection of local field potential and even epileptic discharges during the magnetic scan. This study provides a comprehensive study of carbon nanotubes as invasive brain electrodes, providing a new path to address the challenge of long-term brain electrode implantation.

Funder

STI2030-Major projects

Zhejiang Province high level talent special support plan

Zhejiang Province Key R & D programs

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbon-based implantable bioelectronics;Applied Physics Reviews;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3