PVA-TiO2 Nanocomposite Hydrogel as Immobilization Carrier for Gas-to-Liquid Wastewater Treatment

Author:

Surkatti Riham12,van Loosdrecht Mark C. M.2ORCID,Hussein Ibnelwaleed A.1ORCID,El-Naas Muftah H.1ORCID

Affiliation:

1. Gas Processing Center, Qatar University, Doha 2713, Qatar

2. Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

This study investigates the development of polyvinyl alcohol (PVA) gel matrices for biomass immobilization in wastewater treatment. The PVA hydrogels were prepared through a freezing–thawing (F-T) cross-linking process and reinforced with high surface area nanoparticles to improve their mechanical stability and porosity. The PVA/nanocomposite hydrogels were prepared using two different nanoparticle materials: iron oxide (Fe3O2) and titanium oxide (TiO2). The effects of the metal oxide nanoparticle type and content on the pore structure, hydrogel bonding, and mechanical and viscoelastic properties of the cross-linked hydrogel composites were investigated. The most durable PVA/nanoparticles matrix was then tested in the bioreactor for the biological treatment of wastewater. Morphological analysis showed that the reinforcement of PVA gel with Fe2O3 and TiO2 nanoparticles resulted in a compact nanocomposite hydrogel with regular pore distribution. The FTIR analysis highlighted the formation of bonds between nanoparticles and hydrogel, which caused more interaction within the polymeric matrix. Furthermore, the mechanical strength and Young’s modulus of the hydrogel composites were found to depend on the type and content of the nanoparticles. The most remarkable improvement in the mechanical strength of the PVA/nanoparticles composites was obtained by incorporating 0.1 wt% TiO2 and 1.0 wt% Fe2O3 nanoparticles. However, TiO2 showed more influence on the mechanical strength, with more than 900% improvement in Young’s modulus for TiO2-reinforced PVA hydrogel. Furthermore, incorporating TiO2 nanoparticles enhanced hydrogel stability but did not affect the biodegradation of organic pollutants in wastewater. These results suggest that the PVA-TiO2 hydrogel has the potential to be used as an effective carrier for biomass immobilization and wastewater treatment.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3